八年级下册数学

资料百科

八年级下册数学人教版义务教育课程标准实验教科书(最新版)是人民教育出版社出版的。

  • 中文名 八年级下册数学
  • 分类 书籍
  • 出版社 人民教育出版社
  • 类型 教科书

基本知识点

  ​1、 过两点有且只载妒故不第器怎全略司有一条直线。

  2 、两点之间线段最短

  3、同角或等角的补角相等。

  4 、同角或等角的余角相等。

  5 、过一点有比边即二乡垂住伟袁散且只有一条直线和已知直来自线垂直。

  6 、直线外一点与360百科直线上各点连接的所有线段中,垂线段最短。

  7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行。

  8 、如果两条直线都和第三条直线平行,这两条直线也互相平行[尽练维裂1]。

  9 、同位角相等,两直线平行。

  10 内错角相等,两直线平行。

  11 、同旁内角互补,两直线平行。

    12、两直线平行,同位角相等。

  13 、两直线平行,内错角相等。

  14 、两直线平行,目阻述同旁内角互补。

  15 、定理 三角形两边的和大于第三边。

  16 、推论 三角形两边的差小于第三边。

  17、三角形内角和定理三角形三个内角的和等于180°。

  18 、推论1 直角三角形的两个锐角互余。

  等角的余角相等。

  19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和

  20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角。

  21 、全握立呀鲁背等三角形的对应边、对应角相等。

  22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形划觉免红观各参费严已身全等。

  23 、角边亮百费协两角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等。

  24 、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

  25 、边边边公理(SSS) 有三边对应相等的两个三角形全等[2]。

  26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

  27 、定理1 在满关粉培技维体角的平分线上的点到这个角的两边的距离相等。

  28 、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

  29 、角的平分线是到角的两边距离相等的所有点的集合。

  30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)。

  31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。

  针当缺适作皇草评呀32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

  33 、推论编号费千格必十3 等边三角形的各角都相等,并副争全核该啊属且每一个角都等于60°。

  34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也课望剂担相等(等角对等边)。

再校终措敌若天奏发以鲜  35、 推论1 三个促左严独样树染角都相等的三角形果笔求名并施多是等边三角形。

  36 、推论 2 有一个角等于60°的等腰三角形是等边三角形。

  37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等航密唱超始须凯于于斜边的一半。

  38 、直角三角形斜边上的中线等于斜边上的一半。

  获试39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等。

  40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平总财分线上。

  41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

  42 、定理1 关于某条直线对称的两个图形是全等形。

  43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

  44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。

  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形。

  48、定理 四边形的内角和等于360°。

  49、四边形的外角和等于360°。

  50、多边形内角和定理n边形的内角的和等于(n-2)×180°。

  51、推论 任意多边的外角和等于360°。

  52、平行四边形性质定理1 平行四边形的对角相等。

  53、平行四边形性质定理2 平行四边形的对边相等。

  54、推论 夹在两条平行线间的平行线段相等。

  55、平行四边形性质定理3 平行四边形的对角线互相平分。

  56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形。

  57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形。

  58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形。

  59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形。

  60、矩形性质定理1 矩形的四个角都是直角。

  61、矩形性质定理2 矩形的对角线相等。

  62、矩形判定定理1 有三个角是直角的四边形是矩形。

  63、矩形判定定理2 对角线相等的平行四边形是矩形。

  64、菱形性质定理1 菱形的四条边都相等。

  65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角。

  66、菱形面积=对角线乘积的一半,即S=(a×b)*2。

  67、菱形判定定理1 四边都相等的四边形是菱形。

  68、菱形判定定理2 对角线互相垂直的平行四边形是菱形。

  69、正方形性质定理1 正方形的四个角都是直角,四条边都相等。

  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

  71、定理1 关于中心对称的两个图形是全等的。

  72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  74、等腰梯形性质定理等腰梯形在同一底上的两个角相等。

  75、等腰梯形的两条对角线相等。

  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。

  77、对角线相等的梯形是等腰梯形。

  78、平行线等分线段定理如果一组平行线在一条直线上截得的线段。

  相等,那么在其他直线上截得的线段也相等。

  79、 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰。

  80 、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边。

  81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。

  82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

  83、 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d。

  84 、(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d。

  85 、(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b[3]。

数学公式

  常用数学公式

  公式分类

  公式表达式

  基本公式

  乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  编辑本段其他

  1、 过两点有且只有一条直线。

  2 、两点之间线段最短。

  3、同角或等角的补角相等。

  4 、同角或等角的余角相等。

  5 、过一点有且只有一条直线和已知直线垂直。

  6 、直线外一点与直线上各点连接的所有线段中,垂线段最短。

  7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行。

  8 、如果两条直线都和第三条直线平行,这两条直线也互相平行[1]。

  9 、同位角相等,两直线平行。

  10 、内错角相等,两直线平行。

  11 、同旁内角互补,两直线平行。

  12、两直线平行,同位角相等。

  13 、两直线平行,内错角相等。

  14 、两直线平行,同旁内角互补。

  15 、定理 三角形两边的和大于第三边。

  16 、推论 三角形两边的差小于第三边。

其他

  定理

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角方程

  圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y来自2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2p360百科x y2=-2px x2=2py x2=-2py

  察我课投电强操怕面积计算

  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi在矛轮香乎史利历盐兵(R+r)l 球的表祖令剧二面积 S=4pi*r2

  圆柱秋讨声飞官底老侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*毫副药学l=pi*r*l

  弧长公式 l=a*r a是圆钱够个劳喜心角的弧度数r >0 扇波日头光销形面积公式 s=1/2*l*r

分章解析

  第十六章 分式

  1.分式定义:如果A、B表示两个整式,并且振战守刻倒右补乐并B中含有字母,那么式子A/B叫做分式。

  分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零

  2.分式的基本性质脸首弱与:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

  3.分式的通分和约分:关键先是求分母的最小公倍数和分解因式

  4.分式的运算:分式乘法法则:两分式分子分母分别相乘,许占级套总艺还型作为结果的分子分母,能约分的要约成最简结果。

  分式除法法则:分式除以分式,把除式的分子、分母颠倒位成景拿丝置后,与被除式相乘。

  分式乘方法则: 分式乘方要把分子、分母分别乘方。

调兰主套年乡案商策令  分式的加减法则:同分母的分式相加减,分母素试业备物在左烧容死不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加

  混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

  5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为冷齐弱维牛界工子正整数时, (

  正整数指数幂运算性质(请同学们自己复习)也可以推广到整数指数幂.

  6. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

  解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为立湖整式方程。

  解分二饭试东斤送孙式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

  解分式方程的步骤 :

  (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.

  增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

  分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

  列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.

  应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.

  7.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.

  用科学记数法表示绝对值大于10的n位整数时,其中10的指数是

  用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)[2]

  第十七章

  反比例函数

  1.定义:形如y=k/x(k为常数,k≠0)的函数称为反比例函数。

  2.图像:反比例函数的图像属于双曲线。

  3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

  第十八章

  勾股定理

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a²+b²=c²。

  2.勾股定理逆定理:如果三角形三边长a,b,c满足a²+b²=c²。,那么这个三角形是直角三角形。

  3.经过证明被确认正确的命题叫做定理。

  我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  第十九章

  四边形

  平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

  平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;

  3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。

  矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  菱形的定义 :邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形是菱形。

  3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

  正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

  梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是 (约为0.618)的矩形叫做黄金矩形。

  第二十章

  数据的分析

  1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。

  学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

  2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流

  6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com