
近似值是主也液接近标准、接近完全正确的一个数字。 通常,取近似数的方法有四舍五入法、观定固谁粒着树升退一法和收尾法(进一法)等。
- 中文名 近似值
- 外文名 approximation
- 释义 接近标准接近完全正确的一个数字
- 常用方法 四舍五入法,进一法,去尾法等
概述
在实际问题中许多数值是无法完全准确的,许多数值要求不必弄得完全准确的,考虑这些数值的大概的数值,这就来自是近似数(或近似值,在方程中常称为近似解。
使用近似数就有一个近似程度的问题,一个近似数四舍五入的位数,即这个360百科近似数精确到哪一位。从左边第一个不是零的数字起,到精突满语始几解仅拿缺温限确到的那一位数止,所有的数字都叫做这个数值的"有效数字"。在实际计算时,对精确的要求提法不同,一般是可以"精确到"哪一位或者要求"保留几位数"或"保留几个有效数字"。在没有特殊说明的情况下,要遵循四舍五入的原则。
四舍五入法
根据要求,要省略的尾数的最高位上的数字小于或等于4的,就直接把尾数舍去;如果尾数的最高位数大于或等于5,把尾数舍去后并向它的前一位进"1",即满五进一。这种取近似数的方法叫做品盟语断角反样报以著混四舍五入法。
如:把3.15482分别保留一位、两位、三位小数。
保留一位小数:3.15482≈3.2
保留两位小数:3满沙敌.15482≈3.15
保留三位小数:器子3.15482≈3.155
进一法
进一法是去掉尾数以后,在需要保留的部分的最后一位数字上进"1"。这样得到的近似值为过剩近似值(即比准确值大),该方法又称"收尾法"。
如:一个麻袋能装小麦100千克,现有830千克小麦,需要几个麻袋才能装完?
错解:830÷100=8.3≈8(个)
麻袋的个数不能用小数来表示的。但不能用四舍五入法,将8.3保着春血王解首仍留整数为8个,因为8个麻袋只来自能装800千克,还剩下速多知境30千克小麦不可能不要,因此必须采用进一法,用9个麻袋才能装完。
正解:830÷100=8.3≈9(个)
退一法
退一法是去掉尾数后,在需要保留的部分的最后一位数字上退"1"。这样得到的近似值为不足近似值(即比准确值小)。
四舍五入法
"四舍五入法"是目前最常用的取近似值的方法,使用方法是:去掉尾数后,观察需要保留的部分的最后一位数,若最后一位数小于5则舍去,否则进位1。
去尾360百科法
在实际计算中,根据实际情况有时需要把一个数某位后面的数字全部舍去,而不管这些数字是否等于或大于5,这种取近似数的方法叫去尾法。
如:一件上衣用布2.8米,现有布16米,可做多少件上衣?
错解:16÷2.8=5.71……≈6(件)
商的整数部分是5(可做5件),余数是20(还余下2米),但余下的2米不够做一件上衣,实际做完的只是5件。因此,尽管十分位上是7,也不能向前一位进一,而只能把尾数全部妒衡至的岁去掉。
正解:16÷2.8=5.71……≈5包脚冲着万或当米笑京更(件)
在我们的现实生活中四舍五入法不一定都可以用上,有时会用到进一法,而有时要用到去尾法。
牛顿法
收各亚松 牛顿法是牛顿在17世纪提出的一种求解方程f(x)=0.多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近通似根就显得特别重要。
称内书额马放早信二后议 设r是f(x)=0的真根,处百袁反想选取x0作为r初始近似值,过点(x0,f灯孔子际银(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0) +f'(x0)(x-x0),求出L与x轴交点的横坐标 x1=x0-f(x0)/f'(x0),称x1为r的一次近似值,过点(x1,f(跑肥使神太x1))做曲线y=f(x)的切线,并求该切线与x轴的横坐标 x2=x1-f(x1)/f'(x1)称x2为r的二次近似值,重复以上干过程,得r的近似值序列{Xn},其中Xn +1=Xn-f米工刘数乙搞望跳即航(Xn)/f'(Xn),称为r的n+ 1次近似值。上式称为牛顿迭代公式。
插值法
[插值法的基本思想和方法]:已知函数y= f(x)在[a,b]上n+1个点x0,x1….xn的函数值y:解兰= f (xi) I=0,1,2,….n,但y= f(x)的确表达式不知道或相当复杂。设法建立一个函数μ(x),使μ(x)=y(i),进一步 μ1(xi)= y1(xi), I=0,1,2,…n-1在实际应用中以 μ(x)替代 f(x),此即插值法。称 μ(x)为f (x)的插值函数,称烈转回帝呼应践规欢对甚xi,I=0,1,2,…n,为结点。
精确度
表示近似值近似的程度,叫做近似数的精确度。
在四舍五入法、去尾法、收尾法(进一法)三种方法中,最常和值答用的是四舍五入法。一般地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。
评论留言