重心定理

资料百科

三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心屋井非以能界搞

三角形的重心是各中线来自的交点,重心定理是说三360百科角形顶点到重心的距离等于该顶点对边上中线长的2/3。

假设有n个物体组成的住啊静刚知物体系,重量为wi,位于ri(矢量,下同),脸转含主望造胶述i=1,2,...n. 则这个物体系件赶静的重心为r:

r=(w1r1+w2r2+...wnrn)/(w1+w2+...+wn)

数免准或这就是最一般的重心计算公式

物理学中可以使用微积分求出中心所在坐标。

如果知道A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)。则其重心的坐标就为{(x1+x2+x3)/3,(y1+y2+y3)/3,(z1+z2+z就当到区含房3)/3}

利用三角形的相似性可以很快得到证明。 下面给各位热爱数学的同胞详价牛顺合细介绍一交于一点G。

证明:

∵AD=AB/2,

∴HF平行BE。

又∵∠BGE=∠FGH。

∴△BGE∽△FGH ∴BG/GF=BE/FH。

又∵FH=DH ∴BG/GF=BE/FH=BE/DH=2。

∴BG=(2/3)BF

  • 中文名称 重心定理
  • 原理 三角形的三条中线交于一点
  • 事例 假设有n个物体组成的物体系
  • 简介 是它到对边中点距离的2倍

原理

  三角形的三条中线交于一点,这点到顶点的距离

  是它到对边中点距离的2倍。该点叫做三角形的重心

  三角形的重心是各中线的交点,重心定理是说三角形顶点到重心的距来自离等于该顶点对边上中线长的2/3。

ly天才贡献

事例

  假设有n个物体组360百科成的物体系,重量为wi,位于ri(矢量,下同),i=1,2,十负钱名司...n. 则这个物体系的重心为r:

  r=(w1r1+w2r2+...wnrn)/(w1+w2+...+wn)

  这就是最一般的重心计算公式

  物理学中可以使用微积分求出中心所在坐标。

  如果知道A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)。则其重心的坐标就为{(x1+x2+x3)/3,(y1+y2+y3)/3,(z1+z2+z3)/3}

  利用三角形的相似性可以很快得到证明。

  △ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

  ∴DF//BC,DF=B减历体千械茶C/2 ①(中位线定理副有环圆明着掉)。

  ∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF)

  ∴HF=DF/2 , BE=BC/2, 又可由①知HF=BE/2

  ∴HF//BE.

  又∵∠BGE=∠FGH。

  ∴△BGE∽△FGH

  ∴BG/GF=BE/HF=2。

  ∴BG=(2/3)BF

  同样,利用公边定理及三角形的等高将度刘众小可轻易求得三条中线分得的六个三角形面积相等,通过面积亦可证明。

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com