聚苯胺

资料百科

聚苯胺,是一种高分子化合物,具有特殊的电学、光学性质,经掺杂后可具有较火导电性及电化学性能。经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传来自感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料等等。聚苯胺因其具有的原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了广泛的研究和应用。

聚苯胺的电活性源于分子链中的P电子共轭结构:随分子链中P电子体系的买核觉酒扩大,P成键态和P*反键态分别形成价带和导带,这种非定域的P电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子加露必较在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如C360百科l-、硫酸根、磷酸根等)进入主链,与胺和亚胺基团中N原子结合形成极子和双极子离域到整个分子链的P键中,部须入而从而使聚苯胺呈现较高的导电性。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH值和电位等因沉低示注预素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性。

  • 中文名称 聚苯胺
  • 外文名称 polyaniline
  • 简写 PAn
  • 所属学科 高分子化学
  • 分子量 非定值

简史

  1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为"Krystallin",意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche从靛蓝中得到无色的油状物苯胺,将其命名为aniline,该词源于西班牙语的añil(靛蓝) 并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体山题式义值扩留颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年来自,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。

不同氧化态聚360百科苯胺之间的可逆反应

  不同氧化态聚苯胺之间的可逆反应图册参考资料

理化性质

聚苯胺的实际尔易巴夜制伯哥试飞迅结合成与结构研究始于20世纪初,英国的Green和德国的Willstatter两个研究小组采用各种氧化剂和反应条件对苯胺进行氧化,太车夫蒸具充亚针文委得到一系列不同氧化程度的苯胺低聚物。Willstatter将苯胺的基本氧化产物和缩合产物通称为苯胺黑。而Green分别以H2O2,NaClO3为氧化剂合成了五种具有不同氧化程度的苯胺八隅体,并根据其氧化程度的特景研欢重不同分别命名为全还原式(leucoemeraldine)、单醌式(protoemeradine)、双醌式因门设既权且境(emeraldine)、需强宽目三醌式(nigraniline)、四醌式即全氧化式(pernigraniline)。这些结构形式及命名有的至今仍被采用。1968年,Honzl用缩聚方法合成了苯基封端的聚苯胺齐聚物,同年Surville合成了聚苯胺半导体并提出可能的结构形式,而聚苯胺的结构正式为人所认同是在1984年,MacDiarmid提出了聚苯胺可相互转化的4种形式,并认为无论用化学氧化法还是电化学方法合成的导电聚苯胺均对应于理想模型。中科院长春应化所的王佛松等人配例怕新升细指通过分析聚苯胺的IR和喇曼光谱,确认了醌环的存在并证明了苯看棉广展历关满般置材、醌环的比例为3:1,MacDiarmid等人据此修正之前的模型,概括出了聚苯胺结构。

  聚苯胺掺杂产物的结构,主要由极化子晶格模型和四环苯醌变体模型进行解释。聚苯胺的主要掺杂点是亚胺氮原子。质子携带的正电荷经分子链内部的电荷转移,沿分子链产生周期性鱼欢足的分布。且苯二胺和醌二亚胺必须同时存在才能保证有效的质子酸掺杂。质子掺杂是聚苯胺由绝缘态转变为金属态的关键。本征态的聚苯胺(PAn)是绝缘体,质子酸掺杂或电氧化都可使聚苯胺电导率提高十几个数量级。掺杂态聚苯胺结构中x表示掺杂程度,由掺杂来决定;y表示氧化程度,由合成来决定;A表示质子酸中的阴离子,由掺杂剂决定。然而井知细宗些施笑眼聚苯胺的掺杂过程左卫与其他导电高分子的掺杂不同,通常导电高分子的掺杂总是伴随着其主链上电子的得失,而聚苯胺

  在用质子酸掺杂时,电子数不发生变化。在掺杂过程中H+首先使亚胺球重呢倍答距将得音滑原上的氮原子质子化粉米,这种质子化使得聚苯胺链上掺杂段的价带上出现了空穴,即P型掺杂,形成一种稳定离域形式的反范聚翠绿亚胺原子团。亚胺氮原子所带的正电荷通过共轭作用沿分子链分散到邻近的原子上,从而增加体系的稳定性。在外电场的作用下,通过共轭π电子的共振,使得空穴在整个链段上移动,显示出导电性。完全还原型(y=1)的全苯式结构(Leucoemeraldine base)和完全氧化型(y=0于良土市居停诉差)的全醌式结构(Pernigraniline)都为绝缘体,无法通过质子酸掺杂变为导体,在0

  有人用量子化学算出了中间氧化态聚苯胺的结构。各个芳香环均偏离基准面,属于反式构型,是一个不完全的锯齿状线形结构。进一步研究证实,掺杂态聚苯胺具有与本征态聚苯胺类似的构型。

掺杂

  物质的电学性质取决于其能带结构,物质的能带是由各分子或原子轨道重叠而成,分为价带和导带。通常禁带宽度>10.0 eV时,电子很难激发到导带,物质在室温下显绝缘性;而当禁带宽度为1.0eV左右时,电子则可通过热、振动或光等方式激发到导带,成为半导体。导电高分子都有一个较长的P-电子共轭主链,因此又称为共轭高分子。P-电子共轭体系的成键和反键能带之间的能隙较小,约为1~3eV,接近于无机半导体中的导带的价带能隙。进行掺杂可使其电导率增加甚至十几个数量级,接近于金属电导率。掺杂来源于半导体化学,是指在纯净的无机半导体材料,如硅、锗或镓中,加入少量具有不同价态的第二种物质,以改变半导体材料中的空穴和自由电子的分布状态。导电高分子的掺杂不同于无机半导体的掺杂。无机半导体为原子的替代和镶嵌,而导电高分子的掺杂则常伴随着氧化还原过程。对于无机半导体,掺杂剂可以嵌入到其晶格中,而导电高分子经掺杂后主链会发生变形和位移,但掺杂离子不能嵌入主链中去,只能存在于高分子链与链之间。无机半导体掺杂后形成电子和空穴两种载流子;而对于导电高分子,广为接受的载流子形式有孤子(soliton)、极子(polaron)、双极子(bipolaron)等,这些载流子与高分子链上共轭P-电子紧密相关,而掺杂离子是作为对离子存在的。

  从掺杂量上来看,导电高分子的掺杂量很大,可达一半以上,而无机半导体的掺杂量极低,仅为万分之几。另外,在导电聚合物中存在脱掺杂过程,掺杂/脱掺杂过程是可逆的,而无机半导体通常无法实现可逆的脱掺杂。聚苯胺的质子酸掺杂聚苯胺与质子酸反应,电导率大大提高,再与碱反应则又变为绝缘状态,即为质子酸掺杂和反掺杂。聚苯胺的掺杂机制同其他导电高分子的掺杂机制不同,那些高分子掺杂总是伴随着主链上电子的得失,而聚苯胺的质子酸掺杂没有改变主链上的电子数目,只是质子进入高分子主链上才使链带正电,为维持电中性,阴离子也进。半氧化型半还原型的本征态聚苯胺可进行质子酸掺杂,全氧化型聚苯胺可进行离子注入还原掺杂。全还原型聚苯胺只能进行碘掺杂和光助氧化掺杂。MacDiarmid提出当用质子酸进行掺杂时,亚胺基上的氮原子优先发生质子化,酸中的氢质子与氮原子结合形成价电子离域到大分子结构中形成共轭大P键,使聚苯胺的导电性能提高。

  聚苯胺除了质子酸掺杂外,还可以进行光诱导掺杂、离子注入掺杂及电化学掺杂等。光诱导掺杂又称/光助氧化掺杂,是在特定波长的光照射下,使某物质释放质子作为聚苯胺的掺杂剂进行反应。研究表明,该掺杂是聚苯胺涂层在金属表面能发挥防腐作用的原因之一。有人通过紫外光加速VC-MAC(Vinylidene Chloride and Methyl Acrylate)释放质子完成了聚苯胺的光诱导掺杂。而使用离子注入掺杂将K+离子注入全氧化态聚苯胺中可以发生还原掺杂,离子注入区呈现n型半导体特性。当有40keV K束注入后,聚苯胺薄膜的电导率随着剂量的增加而迅速增加。在电极表面发生的共轭高分子的掺杂为电化学掺杂。通过改变电极电位使涂覆在电极表面的聚合物膜与电极之间发生电荷转移,即可完成掺杂过程。电化学掺杂可以实现许多化学掺杂法无法实现的掺杂反应,也可以通过控制高分子与电极之间的电位差来改变掺杂程度,且掺杂与脱掺杂是一个完全可逆的过程,该过程中无需除去任何化学产物。

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com