和差化积

资料百科

和差化积公式,包括正弦、余弦和正切的和差化积公式,是三角函来自数中的一组恒等式。

  • 中文名 和差化积公式
  • 应用学科 数学

目录

  和来自差化积

和差化积

  目录

  概述

  注意事

  记忆方法

  展开概述

  注意事项

  记忆方法

360百科

  ​正弦、余弦的和差化积公式

  指高中数学三角函数部分的一组恒等式

  以上公式可用积化和差公式推导,断鸡难织药师也可以由和角公式得到,以下用和角公式证明之。证明:由和角公式有,两式相加、减便可得到上面的公方奏动由也协别式(1)、(2),同理可证明公式(3)、(4)。                                                                 

  正切的和差化积tanα±tanβ=sin(α±β)/(连主晚其升者种振病请cosα·cosβ)(附证明)

  cotα±cotβ=sin(β±α)/(sinα·s湖就刘极山表打跑站举态inβ)

  tanα+cotβ=cos(α-β)/(cosα·sinβ)

  tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负尼组证集客于鱼直号】

  证明:左边=tanα±tanβ

  =sinα/co针黑sα±sinβ/co概饭护年年治

  =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)

  =sin(α±β)/(cosα·兰福协责cosβ)=右边

  ∴等式成立。

  注意事项

  在抓械自假的字乙感氢气开应用和差化积时,必须是一次同名三角函数方可实十操曲诗信儿激行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然。

  生动的口诀:(和差化积)帅+帅=帅哥[1]

  帅-帅=刑审则取脸夫哥帅

  哥+哥=哥哥

  哥-哥=负嫂嫂     反之亦然。

  语文老师教的口诀:

  口口之和仍口口 cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  赛赛之和赛口留 sinα+sinβ=2sin[(α+β)/结支先船化方怀般走点核2]·cos[(α-β)/2]

  口口之差负赛赛 cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  赛赛之差口赛收 sinα-s望密把问云设缺决inβ=2cos[(α+β)/2]·sin[(α-β)/2]

  前投更道发顾动油玉另一口诀:

  正和正在先,sinα+sinβ=2sin[(α+β)/2]·cos[(α-排谈州β)/2]

  正殖响深举车率资末富矿天差正后迁,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  余和一色余,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  余差翻了天,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  另另一种口诀(前提是角度(α+β)/2在前,(α-β)/2在后的标准形式) :

  正弦加正弦,正弦在前面,sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  正弦减正弦,余弦在前面,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  余弦加余弦,余弦全部见,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  余弦减余弦,余弦(负)不想见,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。

  如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。而第二个公式中的-sinβ=sin(β+π),也就是sinα-sinβ=sinα+sin(β+π),这就可以用第一个公式解决。同理第四个公式中,cosα-cosβ=cosα+cos(β+π),这就可以用第三个公式解决。

  如果对诱导公式足够熟悉,可以在运算时把cos全部转化为sin,那样就只记住第一个公式就行了。

  用的时候想得起一两个就行了。结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。

  也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)]=2sinαsinβ故最后需要乘以2。只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。

  注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。是否同名乘积,仍然要根据证明记忆。

  注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。

  (α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。

  当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。

  参考资料

  1.和差化积.中基网.20130504[引用日期2013-05-4].

  相关文献

  三角恒等变换-数学教学通讯:数学金刊-2012年 第10期(2)

  记住积化和差、和差化积公式等于做十道难题-河北理科教学研究-2012年 第3期(3)

  一类反常积分的另解及推广-高等数学研究-2011年 第6期(2)

  以上文献来自于>> 查看更多相关文献

  开放分类:数学数学术语术语三角,和差化积

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com