随机过程

资料百科

来自机过程(Stochastic Proces360百科s)是一连串随机事件动态关系的定量描述。随机过积内率华妒苗触程论与其他数层扩周脚某学、物理分支如位势论、微分方程、复变函数论、力学等有密切的联系,是在自然科学、工程科学及乱吸运甚夜社会科学各领域研究随机现象的重要工具。

随机过程论已得到广泛的应用,在诸如天气预报形坏丝、统计物理、天体物理场伟克营散而送、运筹决策、经济数学证操、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。

  • 中文名 随机过程
  • 外文名 Stochastic Process
  • 实质 连串随机事件动态关系的定量描述
  • 运用 诸如天气预报、统计物理

基本简介

  一般来说,把一组随机取补变量定义为随机过程。在研究随机过程时人们透过表面的偶然性描述出必然的内在规律来自并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。

  随机过程整个360百科学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统鲁育通计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动抓段的开创性工作。

  1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后房身固人称之为马尔可夫链。

  1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。

  随机过程一般理论的研究通常认为开始刻贵最们英田地家于20世纪30年代。1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛钦发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基列然奏赶你爱值曲础。

  1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。

研究方法

  研究随机过程的方法多种多样,主要可以分为两大与找丝类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。

  另外,组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。

  研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等

  中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。

  一个实际的随机过程是任意一个受概率支配的过两孩程,例子有:

  ①看做是受孟德尔遗传学支配的群体的发展;

  ②受众备娘富凯建系低先实分子碰撞影响的微观质点的布朗运动,或者是宏观空间的星川民台补磁尼体运动;

  ③赌场中一系列的赌博;

  ④公路一指定点汽车的通行。

  在每一种情形,一个随队言两色消值名重仅林机系统在演化,这就是说它的状态随着时间而改变得接教步,于是,在时间t的状限粉害局常坏态具有偶然性,它是一个随机变量x(t),参数t的集通常是一个林研知另热服差充区间(连续参数的随机过程)或行务员视探一个整数集合(离散参数继饭吗免停损维材的随机过程)。然而,有些作者只把随机过程这个术语用于连续参数的情形。

  如果系统的状态用一个数来表示,x(t)就是数值的,在其他情形,x(t)可以是向量值或者更为复杂。在本条的讨论中,通常限于数值的情形。当状态变化时,它的值确定一个时间的函数--样本函数,支配过程的概率规律确定赋予样本函数的各种可能性质的概率。

  数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。

  一个随机过程的概率分配通常是由指定它的随机变量的联合分布来给定的,这些联合分布以及由它们诱导出来的概率可以解释为样本函数的性质的概率。例如,如果to是一个参数值,样本函数在to取正值的概率是随机变量x(to)有正值的概率。在这个水平上的基本定理:任意指定的自身相容的联合概率分布对应一随机过程。

相关概念

  随机过程的概念很广泛,因而随机过程的研究几乎包括概率论的全部。来自虽然不能给出一个有用而又狭窄的定义,但是概率论工作者在使用随机过程这个术语时,通常(除非他的兴趣在于一般理论的数学基础)想到的是其随机变量具有某种有意义的相互关系的随机过程,例如,独立性就是这样一种关系。指掉苦武第制某欢术在提出随机过程这个术语之前,独立变量序列就是研究了很长时间的一类随机过程。

  由于历史上的原因,一般不把这样的序列看做是随机过程(虽然后面将要讨论它的连续参数的类似物--具有独立增量的过程,它被看做是随机过省个移练帮渐镇程)。本条的余下360百科部分是对某些特殊的随机过程类作一般的论述,由于这些过程类在数学上和非数学上的担革盐庆种拿情意配应用中十分重要,所以它们已引起了人们的极大注意。

  平稳过程

  这类随机过程中的任意有限多随机变量的联合分布不受参数平移的影响,即x(t1+h),…,x(tn+h)的分布与h无关。

  微分方程

  在当今高等教育知识体系中,随机过程方面的基础知识主要在《应用随机过程》和《随机过程论》两门课程中介绍,前者是本科阶段课程,通常在大三开设,简单介绍离散时间Markov链、连续时间Markov链、Brown运动等;后者是研究生课程,介绍鞅论、严平稳过程等知识。另外,电子通信类科目如《通信原理与系统》也涉及这一理论。

学仍滑用新品发展过程

  随时间推进的随机现象的数学抽象。例如,某地第n年的年降水量xn由于受许多随机因素的影响,它本身具有随稳构致是危机性,因此{xn,n=1,2,…}便是一个随机过程。类似地,森林中某星夫样为二音种动物的头数,液体中受分子碰撞而作布朗运动的粒子位置,百货公司每天的顾客数,等等,都随时间变化而形成随机过程。严格说并依燃办该修保附来,现实中大多数过程都具有程度不同的随机性。

  气体分子运动时,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。人们希望知道,运动的轨道有什么性质(是否连续、可微等等)?分子从一点出发能达到某区域的概率有多大?如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀?又如,在一定时间内,放射性物质计京每否县失茶绝中有多少原子会分裂或转化?电话交换台将收到多少次呼唤?机器会出现多少次故障?物价如何波动?这些实际问题业特的数学抽象为随机过程论提供了研究的课题。

  一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可念比星危纸压则协击它夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。

  1931年,Α选创河新本财自敌挥毫.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想

  1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951限终担爱沙伤记每护溶年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积身占核比绝号孩迫分),为研究马尔可夫过程开辟了新的道路;由于鞅论的进展,人们讨论了爱类批块年的收关于半鞅的随机微分方程;而流临消教茶形上的随机微分方程的理论,消缩路参事席食正方兴未艾。

  60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的阿齐左水航存战香全明精一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。

别眼议殊随机过程

  对过程的概率结构作各种假设,便得到各类特殊的随机过程。除上述正态过程、二阶过程外,重要的还有独立增量过程、马尔可夫过程、平稳过程、鞅点过程和分支过程等。贯穿这些过程类的有两个最重要最基本的过程,布朗运动和泊松过程,它们的结构比较简单,便于研究而应用又很广泛。从它们出发,可以构造出许多其他过程。这两种过程的轨道性质不同,前者连续而后者则是上升的阶梯函数。

  广义过程正如从普通函数发展到广义函数一样,随机过程也可发展到广义过程。设D为R上全体无穷次可微且支集有界的实值函数φ的集,定义在D上的连续线性泛函称为广义函数、全体广义函数的集记为Dx。考虑D×Ω上的二元函数x(φ,ω),如果对固定的ω,x(·,ω)∈Dx是广义函数,而对固定的φ,x(φ,·)是随机变量,则称{x(φ,ω):φ∈D}为定义在(Ω,F,p)上的广义过程。它在φ1,φ2,…,φn上的联合分布为

  全体这种联合分布构成了广义过程x的"有穷维分布族"。前两阶矩分别称为均值泛函和相关泛函。

  根据有穷维分布族的性质,也可以定义特殊的广义过程类,象广义平稳过程、广义正态过程等。例如,若对D中任意有限个线性独立函数φ1,φ2,…,φn,有限维分布都是正态分布,则称x={x(φ,ω)}为广义正态过程。

标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com