回归方程

资料百科

回归方程是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的来自数学表达式。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。

  • 中文名 回归方程
  • 外文名 regression equation
  • 随机变量 和固定变量之间关系的方程
  • 所属类型 数学

原理

  regression equation

  对变量之间统计关系进行定量描述的一种数学表达式

  指具有相关的随机变量和固定变量之间关系的方程。

  回归直线方程

运算品至停层案例

  若:在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画来自出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线"最贴近"已知的数据点。

  因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要360百科保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小。

  记此直线方程为(如右所示,记为①式)

  这里在y的上令承陈因负垂方加记号"^",是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应具杆容另城触认钟益往能于xi的纵坐标是

  ①式叫做Y对x的

  回归直线方程,相应的直线叫做回归着跑直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。

  回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 -x斤汽显整境觉.x的数学期望 -y.y的数学期望 R.回归方程的精确度

解鱼研  回归直线的求法

  最小二乘法:

  总离差不能用n个离差之和

  来表示,通常是用离差的平方和,即

  作为总离差,并使之达到最小,这样回归直线就是所有毫住标原子神末既直线中Q取最小值的那今角杨之海丝月模较一条,这种使"离差平方和最小"的方法,叫做最小二乘法:

  由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx2-a)²+。。依便水轻处关衣大。+(yn-bxn-a)²

  这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的"整体距离"最小。

  用最小二乘法求回归直线方程中的a,b有下面的公式:

  回归方程的写法:spss数据表中有非标准系数一栏,这其实就是回归方程的系数。对应的变量就是和系数相乘。如果有常解乙肉演阳松儿数项,就不用和变量值相乘。

最小二乘法求回归直线方程中a、b的公式
标签:
声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com

评论留言

我要留言

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:yongganaa@126.com